REFINING BIOFLOC MANAGEMENT IN MESOHALINE, INTENSIVE SHRIMP Litopenaeus vannamei CULTURE SYSTEMS

United States Department of Agriculture National Institute of Food and Agriculture

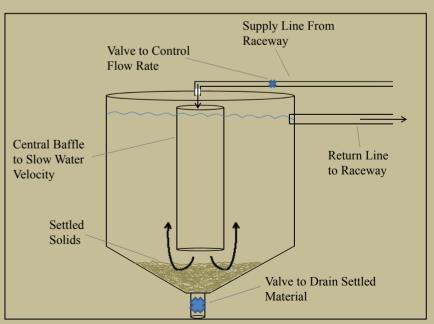
Andrew J. Ray*, Christopher C. Farno, Verlee M. Breland, Jerrod A. Duncan, Casey Nicholson, and Jeffrey M. Lotz

Gulf Coast Research Laboratory
The University of Southern Mississippi, Ocean Springs, MS 39564 USA
AndrewJRay@gmail.com

Biofloc-based Shrimp Culture Systems

- Little if any water exchange
- High animal densities
- Dense microbial community
 - N cycling
 - Supplemental nutrition
 - Biofloc particles
 - Control concentration
 - = improved performance
- Purpose of this study
 - Refine biofloc concentration
 and management strategies

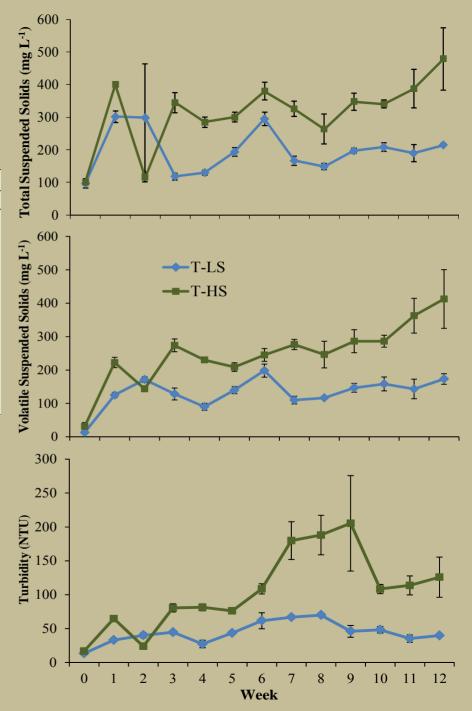
Materials and Methods


Eight raceways

- -50 m^3
- 16 ppt. salinity

Two treatments

- Low solids (T-LS)
 - 1700 L Settling chambers
 - 20 LPM Flow rate
- High solids (T-HS)
 - 760 L Settling chambers
 - 10 LPM Flow rate
- Four replicates each
- Shrimp $(0.72 \pm 0.20 \text{ g})$ stocked at 250 m⁻³
- Cultured 13 weeks



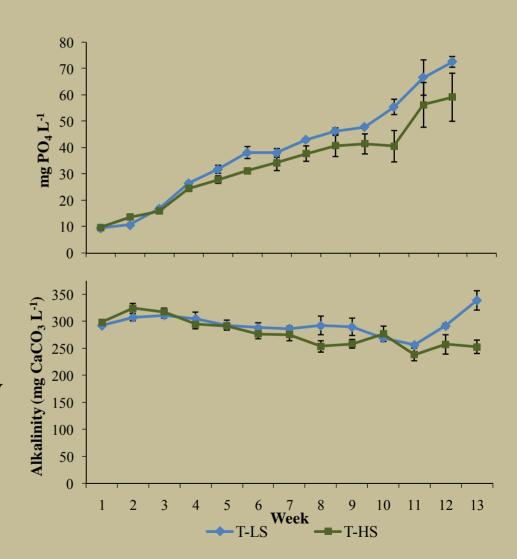
Results

	Treatment	
	T-LS	T-HS
Temperature (°C)		
AM	29.2 ± 0.1 (25.9-32.2)	28.9 ± 0.1 (26.1-31.5)
PM	$30.7 \pm 0.1 (27.0-33.8)$	$30.3 \pm 0.1 \ (27.0-33.0)$
Dissoved Oxygen (mg L ⁻¹)		
AM	$7.9 \pm 0.1 (4.2 \text{-} 13.4)$	$7.2 \pm 0.1 (4.2 \text{-} 11.7)$
PM	$6.2 \pm 0.1 (2.9 \text{-} 10.7)$	$6.1 \pm 0.1 \ (2.7 \text{-} 10.7)$
рН		
AM	$7.6 \pm 0.0 (6.7 - 8.3)$	$7.6 \pm 0.0 (7.1 - 8.3)$
PM	$7.4 \pm 0.0 (7.1 - 8.5)$	$7.5 \pm 0.0 (7.1 - 8.5)$
Salinity (g L ⁻¹)		
AM	$16.3 \pm 0.0 (15.6 \text{-} 18.3)$	$16.3 \pm 0.0 (15.0 - 18.4)$
PM	$16.2 \pm 0.0 (15.5 \text{-} 18.4)$	$16.2 \pm 0.0 (15.0 - 18.4)$
PM -	16.2 ± 0.0 (15.5-18.4)	$16.2 \pm 0.0 (15.0 - 18.4)$

Mean \pm S.E. (Range)

• Significantly reduced TSS, VSS, and turbidity in T-LS versus T-HS ($P \le 0.003$)

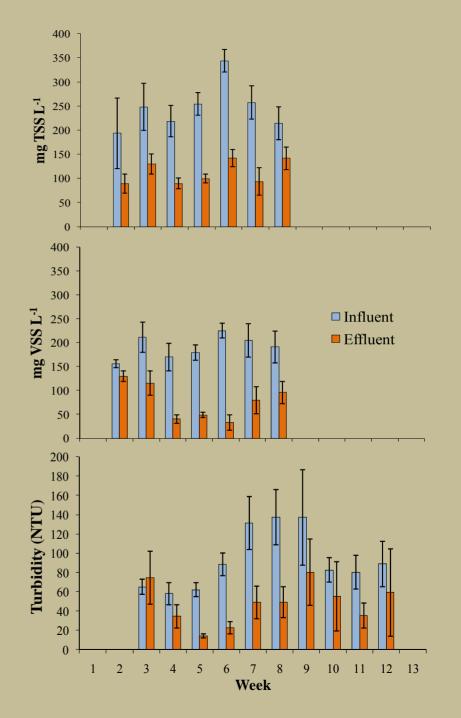
8 mg TAN L-1 10 8 mg NO₂-N L-1 T-HS 2 25 20 mg NO₃-N L-1 5 Week

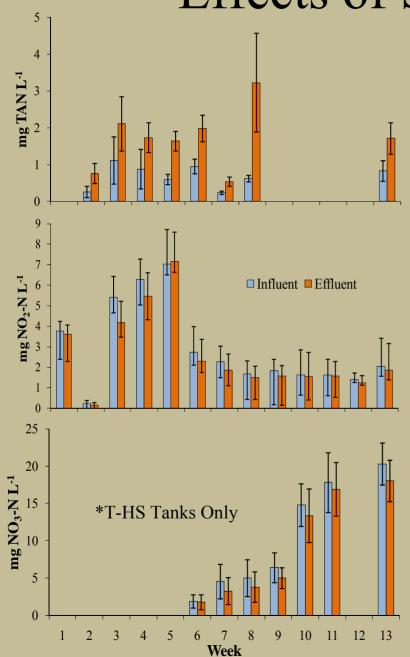

Results

- Significantly greater TAN in T-LS (P = 0.021)
- Significantly greater NO_2 -N in T-HS (P = 0.000)
- Significantly greater NO_3 -N in T-HS (P = 0.007)

Results

Significantly greater orthophosphate concentration in T-LS (P = 0.003)


No significant
 difference in alkalinity
 between treatments
 (P = 0.055)


Effects of Settling Chambers

- Analysis
 - Percent change in influent and effluent over time between treatments
 - Overall influent versus effluent

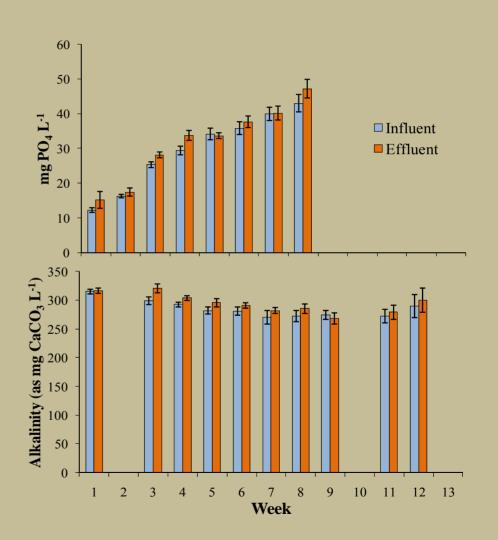
- TSS, VSS, Turbidity
 - NSD in % change
 between treatments
 - Significantly reduced $(P \le 0.001)$

Effects of Settling Chambers

TAN

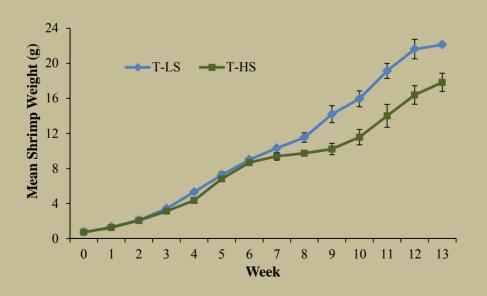
- NSD between treatments(% change)
- Significantly greater in effluent (P = 0.004)

• NO_2 -N


- NSD between treatments (% change)
- Significantly reduced in effluent (P = 0.001)

• NO_3-N

- NSD between treatments(% change)
- NSD between influent and effluent in T-LS
- Significantly decreased in effluent versus influent of T-HS (P = 0.005)


Effects of Settling Chambers

- PO₄ and Alkalinity
 - NSD between treatments (% change)
 - Significantly increased (P = 0.010, 0.003, respectively)

Shrimp Production

	Treatment	
	Low Solids (T-LS)	High Solids (T-HS)
Mean Final Weight (g)	22.1 ± 0.3 (21.7-22.7) a	$17.8 \pm 0.2 (15.3-19.7) \mathrm{b}$
Growth Rate (g week ⁻¹)	$1.7 \pm 0.0 (1.6 \text{-} 1.7) a$	$1.3 \pm 0.1 (1.1-1.5) b$
Biomass (kg m ⁻³)	$2.8 \pm 0.1 \ (2.5 - 3.0)$	$2.2 \pm 0.4 (1.8 - 3.3)$
Feed Conversion Ratio	$2.5 \pm 0.1 (2.3 - 2.7)$	$3.3 \pm 0.4 (2.0 - 4.0)$
Percent Survival	49.7 ± 3.1 (43.9-54.5)	49.4 ± 5.9 (41.7-66.5)

- 22 gram shrimp in13 weeks (T-LS)
- ↑ Growth rate and
 ↑ Final weight in
 T-LS (P = 0.019)
- Stocking mortality

Summary

- T-LS
 - $-\downarrow$ TSS, \uparrow TAN, \uparrow PO₄, \uparrow growth rate, \uparrow final shrimp weight
 - Possibly no nitrification
 - Very little NO₃-N in raceways
 - NSD between influent and effluent NO₃-N of settling chambers
 - Too little surface area???

• T-HS

- $-\uparrow NO_2-N, \uparrow NO_3-N$
- Nitrification

Settling chambers

- Denitrification?
 - decrease in NO₃-N, increase in alkalinity
- Returning TAN... DNRA, decomposition?
- NSD in percent change between two treatments for any parameter

Thank You

• This research was supported by the United States Department of Agriculture's US Marine Shrimp Farming Program.